Model Construction for the A-B-C Ring System of Lysergic Acid via Vilsmeier-Haack-Type Cyclization of $\mathbf{1 H}$-Indole-4-propanoic Acid Derivatives

by Masayuki Kurokawa, Toshiko Watanabe, and Tsutomu Ishikawa*
Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
(phone: +81-43-290-2910; fax: +81-43-290-2910; e-mail: benti@p.chiba-u.ac.jp)

Abstract

Vilsmeier-Haack-type cyclization of $1 H$-indole-4-propanoic acid derivatives was examined as model construction for the $\mathrm{A}-\mathrm{B}-\mathrm{C}$ ring system of lysergic acid (1). Smooth cyclization from the 4 position of $1 H$-indole to the 3 position was achieved by Vilsmeier-Haack reaction in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN , and the best substrate was found to be the N, N-dimethylcarboxamide 9 (Table 1). The modified method can be successfully applied to an α-amino acid derivative protected with an N-acetyl function, i.e., to 27 (Table 2); however, loss of optical purity was observed in the cyclization when a chiral substrate (S)-27 was used (Scheme 5). On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded an S-containing tricyclic system 22, which was formed by a cyclization to the 5 position (Scheme 3).

1. Introduction. - Lysergic acid (1), a tetracyclic indole derivative with two stereogenic centers, is the core unit of ergot alkaloids showing wide spectra of biological activities [1] such as prolactin inhibition, anti-Parkinsonian effect, and depression of hypertension. The total synthesis of racemic $\mathbf{1}$ has been reported by nine research groups [2], and two groups have successfully achieved the asymmetric synthesis [3].

Recently, we have explored a novel aziridination from guanidinium ylides and aromatic (or unsaturated) aldehydes, applicable to asymmetric synthesis [4], and designed the atom-economical synthesis of bioactive N -containing compounds using the formed aziridine as a key synthetic intermediate. Our retro-synthetic strategy of lysergic acid (1) is shown in Scheme 1, in which all the C- and the N-units of the aziridine 2, derived from guanidinium ylide $\mathbf{3}$ and 1 H -indole-4-carboxaldehyde $\mathbf{4}$, are incorporated in the lysergic acid structure during the synthesis. One of the key reactions is the construction of ring C via cyclization from the 4 position of the $1 H$-indole skeleton 2 to its 3-position. Such cyclizations had already been examined by four groups [2i][5], among which Nedelec and Raincy [5a] reported the application of the Vilsmeier-Haack reaction to $1 H$-indole-4-propanamide in their patent. Thus, we extensively examined the cyclization based on their methodology and, in this paper, describe experimental results obtained by using varieties of $1 H$-indole-4-propanoic acid derivatives.
2. Results and Discussion. - 2.1. Cyclizations with 1H-Indole-4-propanamides. First we tried to trace the Vilsmeier-Haack reaction of N, N-dimethyl-1H-indole-4-

Scheme 1. retro-Synthesis of Lysergic Acid (1) with Aziridine Derivative 2 as Key Intermediate

propanamide (9) under the conditions reported in [5a]. The needed N, N-dimethylpropanamide 9 was prepared from the known N-Boc- $1 H$-indole-4-carboxaldehyde 5 $($ Boc $=($ tert-butoxy carbonyl) [6] in four steps via $\mathbf{6 b}, 7 \mathbf{b}$, and $\mathbf{8}$ (Scheme 2) and subjected to the cyclization reaction with phosphoric trichloride $\left(\mathrm{POCl}_{3}\right)$ in THF at 65° for 6 h to give the desired product $\mathbf{1 0}$ in 38% yield (Entry 1, Table 1). Although no improvement was observed when CHCl_{3} was used as solvent in place of THF (Entry 2), the use of MeCN resulted in the formation of $\mathbf{1 0}$ not only in higher yield but also with shorter reaction time (Entry 3). Some time ago, we have reported the efficiency of $\mathrm{K}_{2} \mathrm{CO}_{3}$ as an additive in the intramolecular Friedel-Crafts reaction of 2,4-diarylbutanoic acids using POCl_{3} to give 2-aryl-3,4-dihydronaphthalen-1 2 H)-one derivatives [7]. In the Vilsmeier - Haack reaction with $\mathbf{9}$, addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is also effective (Entries 4-6), and the best yield (74%) was achieved under the conditions shown in Entry 5.

Table 1. Vilsmeier-Haack Reaction of N, N-Dimethyl-1H-indole-4-propanamide (9)

		 9	$\xrightarrow[\text { solvent, } 65^{\circ}]{\substack{\mathrm{POCl}_{3} \\ \mathrm{~K}_{2} \mathrm{CO}_{3}}}$	 10	
Entry	Solvent	$\mathrm{POCl}_{3}[\mathrm{~mol}]$	$\mathrm{K}_{2} \mathrm{CO}_{3}[\mathrm{~mol}]$	Time [h]	Yield ${ }^{\text {a }}$) [\%] of $\mathbf{1 0}$
1	THF	6.3	none	6	38
2	CHCl_{3}	6.4	none	2	40
3	MeCN	6.3	none	2	58
4	MeCN	6.2	2.5	2	56
5	MeCN	3.6	2.7	3	74
6	MeCN	3.8	3.8	4	64

${ }^{\text {a }}$) Non-optimized yield of isolated material.

Further trials for the Vilsmeier-Haack reaction by using different kinds of carboxamides, i.e., N-methyl- N-phenyl- 1 H -indole-4-propanamide (13), N-methoxy- N -methyl- 1 H -indole-4-propanamide (15), and N, N-dimethyl- 1 H -indole-4-propanethioamide (16), which were prepared as shown in Scheme 2 from 7a via 11 and 12, via 11 and 14, and from $\mathbf{7 b}$ via $\mathbf{8}$ and 9 , respectively, only resulted in the formation of complex mixtures.

Scheme 2. Preparation of 1H-Indole-4-propanamides for the Vilsmeier-Haack Reaction

DMAP $=N, N$-dimethylpyridin-4-amine, $\mathrm{DCC}=$ dicyclohexylcarbodiimide, $\mathrm{DMC}=2$-chloro-1,3-dimethyl1 H -imidazolium chloride

Sano and co-workers [8] reported the acid-mediated cyclization of 2-(benzylamino)ethyl phenyl sulfoxide for the construction of the isoquinoline skeleton. Thus, we prepared the 3-(1H-indol-4-yl)propyl phenyl sulfoxide (20) from ethyl 1-Boc-1H-indole-4-propanoate 7b in four steps via 17-19 and subjected it to a Pummerer-type cyclization under the reported conditions [8], with the objective to obtain the tricyclic compound 21 (Scheme 3). Although a reaction occurred, the product obtained was an S-containing tricyclic system 22, which was formed in 38% yield by a cyclization to the 5 position of the 1 H -indole skeleton. Comparable results dependent upon the substrates used were observed in the cyclization of other 4 -substituted $1 H$-indoles.
2.2. Cyclizations with α-Amino-N,N-dimethyl-1H-indole-4-propanamides. Next, the Vilsmeier-Haack reaction was applied to α-amino- N, N-dimethyl- $1 H$-indole-4-propanamides with different kinds of N-protecting groups. The desired propanamides 27

Scheme 3. Preparation of 3-(1H-Indol-4-yl)propyl Phenyl Sulfoxide (20) and a Trial for a Pummerertype Cyclization

and $\mathbf{3 2 - 3 6}$ were prepared from the known methyl (2Z)-2-(acetylamino)-3-(1-tosyl-1H-indol-4-yl)prop-2-enoate (23) [9] via 24-26 and from the known methyl (2Z)-2-(Cbz-amino)-3-(1-Boc-1H-indol-4-yl)prop-2-enoate $\mathbf{2 8}$ [6] via 29-31, as shown in Scheme 4. These propanamides were treated under the optimized Vilsmeier-Haack reaction conditions mentioned above (Table 2).

The desired Vilsmeier-Haack cyclization gave the amino ketone $37(\mathrm{R}=\mathrm{Ac})$ in 34% yield by using the (acetylamino)derivative 27 as a starting material (Entry 1, Table 2). Simple N-phosphorylation occurred when N-unprotected carboxamide $\mathbf{3 3}$ was used (Entry 3). However, replacement of the (acetylamino) by the (benzoylamino) group prevented the cyclization and, instead, hydrolysis of the carboxamide function occurred (Entry 4). The (ethoxycarbonyl)-protected 35 led to the cyclized product in 11% yield (Entry 5), whereas the reactions with the (benzyloxy)carbonylated and the tosylated derivatives $\mathbf{3 2}$ and $\mathbf{3 6}$, respectively, resulted in the formation of a complex mixture (Entries 2 and 6).

Thus, as the desired cyclization was observed in the Vilsmeier-Haack reaction of α -(acetylamino)- N, N-dimethyl-1 H -indole-4-propanamide (27), although not satisfactorily, we attempted to carry out the reaction with the corresponding optically active substrate. ($2 S$)-Methyl 2-(Cbz-amino)-3-(1-Boc-1 H-indol-4-yl)propanoate (S)-29 with 99% ee was prepared by asymmetric hydrogenation of the Wittig - Horner-Emmons reaction product 28 according to the reported method [6]. Successive alkaline hydrolysis $(\rightarrow(S)$-30), 2-chloro-1,3-dimethyl-1 H -imidazolium chloride (DMC)-assisted amidation [10] with $\mathrm{Me}_{2} \mathrm{NH}(\rightarrow(S)$-31), deprotection of the $1 H$-indole N -atom $(\rightarrow(S)-\mathbf{3 2})$, and displacement of the Cbz by the Ac function under reductive conditions afforded (S)-27 in a total yield of 70% (Scheme 5). The high retention of optical activity during the reaction sequence was confirmed by the formation of 2-(Cbz-

Scheme 4. Preparation of Different 2-Amino-N,N-dimethyl-1H-indole-4-propanamides

36

DMAP $=N, N$-dimethylpyridin-4-amine, DMC $=2$-chloro- 1,3 -dimethyl- 1 H -imidazolium chloride
amino)- N, N-dimethyl-1 H-indole-4-propanamide (S)-32 with 99% ee. Unfortunately, racemization of (S)-27 occurred in the Vilsmeier-Haack reaction to give the cyclized product (S)-37 with only 4% ee.

Table 2. Vilsmeier-Haack Reaction of Different α-Amino-N,N-dimethyl-1H-indole-4-propanamides 27 and 32-36

27, 32 - 36
37

Entry	Substrate (R)	Time [h]	Results
1	$\mathbf{2 7}(\mathrm{Ac})$	1	$\mathbf{3 7}(\mathrm{R}=\mathrm{Ac})(34 \%)$
2	$\mathbf{3 2}(\mathrm{Cbz})$	3	complex mixture
3	$\mathbf{3 3}(\mathrm{H})$	3	N-phosphorylation (44%)
4	$\mathbf{3 4}(\mathrm{Bz})$	4	C-hydrolysis (36%)
5	$\mathbf{3 5}\left(\mathrm{CO}_{2} \mathrm{Et}\right)$	4	$\mathbf{3 7}\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}\right)(11 \%)$
6	$\mathbf{3 6}(\mathrm{Ts})$	6	complex mixture

Scheme 5. Preparation of Optically Active ($\alpha \mathrm{S}$)- $\alpha-($ Acetylamino $)-\mathrm{N}, \mathrm{N}-$ dimethyl-1H-indole-4-propanamide ((S)-27) and Subsequent Vilsmeier-Haack Reaction

DMC $=2$-chloro-1,3-dimethyl-1 H -imidazolium chloride
3. Conclusions. - In summary, smooth cyclization from the 4 position of $1 H$-indole to the 3 position was achieved by the Vilsmeier-Haack reaction of N, N-dimethyl-1 H -indole-4-propanamide (9) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN . The optimized conditions can be successfully applied to the α-amino acid derivative 27 N -protected by an acetyl function; however, the loss of optical purity was observed in the cyclization when the enantiomerically pure substrate $(S)-\mathbf{2 7}$ was used. On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded a cyclized product at the 5 position but not at the 3 position.

Experimental Part

General. Anh. THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purchased from Wako and Kanto Chemicals, resp. DMF, $\mathrm{Et}_{3} \mathrm{~N}$, MeCN , benzene, and EtOH were distilled from CaH_{2}. MeOH was distilled from Mg turnings. Org. solns. obtained by extraction were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography (CC): silica gel 60 (spherical, 70-230 mesh) from Kanto Chemicals. M.p.: Yanaco MP-S3 apparatus; uncorrected. [$\alpha]_{\mathrm{D}}$: Jasco P-1020. IR Spectra: Jasco FT/IR-300E spectrophotometer; ATR = attenuated total reflexion; in cm^{-1}. NMR Spectra: CDCl_{3} soln.; Jeol JNM-ECP-400 $\left(400\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.100\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}\right)$ or ALPHA-500 $\left(500\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.125\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}\right)$ instrument; SiMe_{4} as an internal standard for ${ }^{1} \mathrm{H}$, unless otherwise stated, and central resonance of $\mathrm{CDCl}_{3}(\delta 77.0)$ as an internal standard for ${ }^{13} \mathrm{C}$; δ in ppm, J in Hz. MS: Jeol GC-Mate spectrometer with direct inlet for EI; Jeol JMS-HX-110A spectrometer with 3-nitrobenzyl alcohol as a matrix for HR-FAB; in m / z (rel. \%).

Methyl (2E)-3-\{1-[(tert-Butoxy)carbonyl]-1H-indol-4-yl\}prop-2-enoate (6a). To a suspension of $\mathrm{NaH}(60 \% ; 139 \mathrm{mg}, 1.56 \mathrm{mmol})$ in dry THF (8 ml) under Ar was added dropwise methyl (dimethoxyphosphinyl)acetate $(0.52 \mathrm{ml}, 3.61 \mathrm{mmol})$ at 0°, and the mixture was stirred at r.t. for 1 h . Then, a soln. of 5 ($519 \mathrm{mg}, 2.12 \mathrm{mmol}$) in dry THF (8 ml) was added dropwise at 0°, the mixture was stirred at r.t. for 3 h , and the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(3.5 \mathrm{ml})$. After the precipitate was dissolved in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$, the mixture was stirred at r.t. for 10 min and extracted with hexane/AcOEt $2: 1(3 \times 20 \mathrm{ml})$. The combined extract was washed with sat. aq. NaHCO_{3} soln. $(10 \mathrm{ml})$ and brine $(12 \mathrm{ml})$, dried, and concentrated and the residue purified by CC (hexane/AcOEt $24: 1$ to $18: 1$): $\mathbf{6 a}$ ($615 \mathrm{mg}, 96 \%$). Colorless prisms. M.p. 103.5-104 . IR (ATR): 1722, 1703 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.68\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 3.84$ (s, $\mathrm{MeO}) ; 6.57(d, J=16.1, \mathrm{H}-\mathrm{C}(2)) ; 6.85(d, J=3.7$, arom. H) ; $7.33(d d, J=8.0,8.0$, arom. H); $7.50(d, J=$ 8.0 , arom. H); 7.69 ($d, J=3.7$, arom. H) ; $8.07(d, J=16.1, \mathrm{H}-\mathrm{C}(3)) ; 8.22(d, J=8.0$, arom. H). ${ }^{13} \mathrm{C}-$ NMR (125 MHz): 28.2; 51.8; 84.1; 105.1; 117.0; 118.5; 121.4; 124.3; 126.7; 127.1; 130.1; 135.6; 142.1; 149.5; 167.6. EI-MS: $302\left(4,[M+\mathrm{H}]^{+}\right), 301\left(23, M^{+}\right), 245(84), 201(64), 170(47), 115(32), 57(100)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 67.76, H 6.36, N 4.65; found: C 67.66, H 6.32, N 4.54.

Ethyl (2E)-3-\{1-[(tert-Butoxy)carbonyl]-1H-indol-4-yl\}prop-2-enoate (6b). As described for 6a, from 5: 6b (96\%). Colorless prisms. M.p. 128.5-129 . IR (KBr): 1720, $1698(\mathrm{CO}) \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$: $1.36\left(t, J=7.1, M e \mathrm{CH}_{2}\right) ; 1.68\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 4.30\left(q, J=7.1, \mathrm{MeCH}_{2}\right) ; 6.57(d, J=15.9, \mathrm{H}-\mathrm{C}(2)) ; 6.86(d$, $J=3.7$, arom. H); $7.33(d d, J=8.0,8.0$, arom. H); $7.50(d, J=8.0$, arom. H); $7.69(d, J=3.7$, arom. H); $8.06(d, J=15.9, \mathrm{H}-\mathrm{C}(3)) ; 8.21\left(d, J=8.0\right.$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): 14.4 ; 28.2 ; 60.5 ; 84.1 ; 105.2$; 116.9; 119.0; 121.4; 124.3; 126.8; 127.0; 130.1; 135.7; 141.9; 149.5; 167.2. FAB-MS: $316\left([M+\mathrm{H}]^{+}\right), 315$ $\left(M^{+}\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4}$: C 68.55, H 6.71, N 4.44; found: C 68.60, H 6.68, N 4.28.

Methyl 1-[(tert-Butoxy)carbonyl]-1H-indole-4-propanoate (7a). A mixture of $\mathbf{6 a}(1.525 \mathrm{~g}$, $5.06 \mathrm{mmol})$ in dry benzene $(28 \mathrm{ml})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{ml})$ was hydrogenated over $5 \% \mathrm{Pd} / \mathrm{C}(410 \mathrm{mg})$ under H_{2} at r.t. for 50 min . After removal of the catalyst by filteration through a Celite ${ }^{\circledR}$ pad followed by washing with AcOEt , the filtrate was evaporated. Purification of the residue by CC (hexane/AcOEt $20: 1$ to $17: 1$) afforded 7a ($1.472 \mathrm{~g}, 96 \%$). Colorless oil. IR (ATR): 1735 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67(s$, $\left.\mathrm{Me}_{3} \mathrm{C}\right) ; 2.71\left(t, J=7.9, \mathrm{CH}_{2}(\alpha)\right) ; 3.20\left(t, J=7.9, \mathrm{CH}_{2}(\beta)\right) ; 3.67(s, \mathrm{MeO}) ; 6.64(d, J=3.7$, arom. H); 7.05 $(d, J=7.7$, arom. H); $7.24(d d, J=7.7,7.7$, arom. H); $7.61(d, J=3.7$, arom. H); $8.02(d, J=7.7$, arom. H). ${ }^{13} \mathrm{C}$-NMR (125 MHz): 28.2; 35.1; 51.6; 83.7; 105.2; 113.5; 122.0; 124.4; 125.7; 129.6; 132.8; 135.2; 149.8; 173.4. HR-FAB-MS: $303.1473\left(M^{+}, \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}^{+}\right.$; calc. 303.1471).

Ethyl 1-[(tert-Butoxy)carbonyl]-1H-indole-4-propanoate (7b). As described for 7a, from $\mathbf{6 b}$: 7b (95%). Colorless oil. IR (neat): $1735(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.24\left(t, J=7.1, M e \mathrm{CH}_{2}\right) ; 1.67$ (s, $\left.\mathrm{Me}_{3} \mathrm{C}\right) ; 2.69\left(t, J=7.9, \mathrm{CH}_{2}(\alpha)\right) ; 3.19\left(t, J=7.9, \mathrm{CH}_{2}(\beta)\right) ; 4.13\left(q, J=7.1, \mathrm{MeCH}_{2}\right) ; 6.64(d, J=3.8$, arom. H); $7.06(d, J=8.0$, arom. H) ; $7.24(d d, J=8.0,8.0$, arom. H); $7.60(d, J=3.8$, arom. H); $8.02(d$, $J=8.0$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): 14.2 ; 28.1 ; 28.2 ; 35.3 ; 60.5 ; 83.7 ; 105.2 ; 113.4 ; 122.0 ; 124.4$; 125.7; 129.6; 132.8; 135.2; 149.8; 173.0. HR-FAB-MS: $317.1629\left(M^{+}, \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}^{+}\right.$; calc. 317.1627).

1-[(tert-Butoxy)carbonyl]-N,N-dimethyl-1H-indole-4-propanamide (8). To a suspension of $\mathrm{Me}_{2} \mathrm{NH}$ $\mathrm{HCl}(268 \mathrm{mg}, 3.29 \mathrm{mmol})$ in dry benzene $(5.5 \mathrm{ml})$ under Ar was added dropwise at $0^{\circ} 2 \mathrm{M} \mathrm{Me} \mathrm{Me}_{3} \mathrm{Al}$ in heptane ($1.6 \mathrm{ml}, 3.20 \mathrm{mmol}$), and the mixture was stirred at r.t. for 1 h . Then a soln. of $\mathbf{7 b}(504 \mathrm{mg}$, 1.59 mmol) in dry benzene (7 ml) was added at 0°. The mixture was stirred at 65° for 7 h , and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$ at 0°. After addition of $10 \% \mathrm{HCl}$ aq. soln. $(2.4 \mathrm{ml})$, the mixture was extracted with $\operatorname{AcOEt}(3 \times 15 \mathrm{ml})$, the combined org. extract washed with sat. aq. NaHCO_{3} soln. $(10 \mathrm{ml})$ and brine (12 ml), dried, and concentrated, and the residue purified by CC (benzene/AcOEt $6: 1$ to $4: 1$): 8 ($471 \mathrm{mg}, 94 \%$). Colorless oil. IR (neat): 1734, $1653(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.68(t$, $\left.J=7.9, \mathrm{CH}_{2}(\alpha)\right) ; 2.86,2.94($ each $s, \mathrm{MeN}) ; 3.22\left(t, J=7.9, \mathrm{CH}_{2}(\beta)\right) ; 6.66(d, J=3.7$, arom. H); 7.07 (d, $J=7.1$, arom. H); $7.24(d d, J=7.1,7.7$, arom. H); $7.60(d, J=3.7$, arom. H); $8.03(d, J=7.7$, arom. H). ${ }^{13}$ C-NMR (100 MHz): 28.1; 28.5; 34.4; 35.4; 37.1; 83.6; 105.3; 113.2; 122.1; 124.3; 125.6; 129.6; 133.7; 135.1; 149.7; 172.2. HR-FAB-MS: $317.1872\left([M+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}^{+}\right.$; calc. 317.1865).
N, N-Dimethyl-1H-indole-4-propanamide (9). A soln. of $\mathbf{8}(707 \mathrm{mg}, 2.23 \mathrm{mmol})$ in $\mathrm{AcOH}(29 \mathrm{ml}$, 507 mmol) was stirred at 100° for 22 h , and the solvent was evaporated. The residue was purified by CC (benzene/AcOEt $4: 1$ to $2: 1$): 9 ($420 \mathrm{mg}, 87 \%$). Colorless prisms. M.p. $117-118^{\circ}$ ([5a]: $117-118^{\circ}$). IR (ATR): $3208(\mathrm{NH}), 1631(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.75\left(t, J=7.8, \mathrm{CH}_{2}(\alpha)\right) ; 2.78,2.87$ (each $s, \mathrm{MeN}) ; 3.16\left(t, J=7.8, \mathrm{CH}_{2}(\beta)\right) ; 6.50(d d, J=3.1,0.9$, arom. H $) ; 6.83(d d, J=7.6,0.9$, arom. H); 7.01 $\left(d d, J=7.6,7.6\right.$, arom. H) ; $7.21\left(d, J=3.1\right.$, arom. H) ; $7.23\left(d, J=7.6\right.$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): 29.1 ; 34.5 ; 35.5 ; 37.2 ; 100.7 ; 109.3 ; 119.1 ; 122.1 ; 123.9 ; 127.1 ; 133.5 ; 135.8 ; 172.8$. FAB-MS: 217 $\left([M+\mathrm{H}]^{+}\right), 216\left(M^{+}\right)$. HR-FAB-MS: $216.1249\left(M^{+}, \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}^{+}\right.$; calc. 216.1263).

1-[(tert-Butoxy)carbonyl]-1H-indole-4-propanoic Acid (11). A mixture of $\mathbf{7 a}(157 \mathrm{mg}, 0.518 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(330 \mathrm{mg}, 7.87 \mathrm{mmol})$ in THF $(2.4 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2.4 \mathrm{ml})$ was stirred at r.t. for 5 h , acidified with 6 N aq. $\mathrm{HCl}(\mathrm{pH} 2)$, and extracted with $\mathrm{AcOEt}(3 \times 9 \mathrm{ml})$. The combined extract was washed with brine (5 ml), dried, and concentrated and the residue purified by CC (hexane/AcOEt $10: 1$ to $10: 3$): $\mathbf{1 1}(150 \mathrm{mg}, 100 \%)$. Colorless prisms. M.p. $131.5-132^{\circ}$. IR (ATR): 3200-2600(OH); 1726, $1693(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.77\left(t, J=7.9, \mathrm{CH}_{2}(\alpha)\right) ; 3.21\left(t, J=7.9, \mathrm{CH}_{2}(\beta)\right) ; 6.64$ $(d, J=3.8$, arom. H$) ; 7.07(d, J=7.8$, arom. H$) ; 7.25(d d, J=7.8,7.8$, arom. H$) ; 7.61(d, J=3.8$, arom. H$)$; $8.03\left(d, J=7.8\right.$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 27.8 ; 28.0 ; 34.9 ; 83.7 ; 105.1 ; 113.6 ; 122.0 ; 124.4 ; 125.8$; 129.5; 132.3; 135.2; 149.7; 178.9. FAB-MS: $290\left([M+\mathrm{H}]^{+}\right), 289\left(M^{+}\right)$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 66.42, H 6.62, N 4.84; found: C 66.37, H 6.63, N 4.73.

1-[(tert-Butoxy)carbonyl]-N-methyl-N-phenyl-1H-indole-4-propanamide (12). A mixture of 11 ($100 \mathrm{mg}, 0.346 \mathrm{mmol}$), N-methylbenzenamine ($75 \mu \mathrm{l}, 0.692 \mathrm{mmol}$), DCC ($142 \mathrm{mg}, 0.688 \mathrm{mmol}$), and DMAP ($11 \mathrm{mg}, 90.0 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml})$ was stirred at r.t. for 6 h , and the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(3 \mathrm{ml})$. Then the precipitates were dissolved with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 12 \mathrm{ml})$, the combined extract washed with brine $(6 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (hexane/AcOEt $5: 1$ to $3: 1): \mathbf{1 2}(112 \mathrm{mg}, 86 \%)$. Colorless oil. IR (ATR): 1724, $1649(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.44\left(t, J=7.8, \mathrm{CH}_{2}(\alpha)\right) ; 3.14(t$, $\left.J=7.8, \mathrm{CH}_{2}(\beta)\right) ; 3.25(s, \mathrm{MeN}) ; 6.40(d, J=3.7$, arom. H); $6.91(d, J=7.6$, arom. H); $6.97(d, J=7.0,2$ arom. H); 7.17 ($d d, J=7.6,7.6$, arom. H); 7.27-7.33 ($m, 3$ arom. H); $7.51(d, J=3.7$, arom. H); 7.97 (d, $J=7.6$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 28.2 ; 29.1 ; 35.2 ; 37.4 ; 83.6 ; 105.3 ; 113.2 ; 122.3 ; 124.3 ; 125.5$; 127.3; 127.7; 129.6; 129.7; 133.5; 135.1; 144.0; 149.8; 172.4. HR-FAB-MS: 379.2023 ([M+H] ${ }^{+}$, $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}^{+}$; calc. 379.2022).

N -Methyl-N-phenyl-1H-indole-4-propanamide (13). A soln. of 12 ($398 \mathrm{mg}, 1.05 \mathrm{mmol}$) in AcOH $(13.2 \mathrm{ml}, 231 \mathrm{mmol})$ was stirred at 100° for 12 h , and the solvent was evaporated. The residue was dissolved with $\mathrm{AcOEt}(25 \mathrm{ml})$, the org. soln. washed with $5 \mathrm{~N} \mathrm{NaOH}(3 \mathrm{ml})$ and brine $(7 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (hexane/AcOEt $3: 1$ to $2: 1): \mathbf{1 3}(266 \mathrm{mg}, 91 \%)$. Yellow oil. IR (ATR): $3282(\mathrm{NH}), 1633(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 2.51\left(t, J=8.1, \mathrm{CH}_{2}(\alpha)\right) ; 3.20(t, J=8.1$,
$\left.\mathrm{CH}_{2}(\beta)\right) ; 3.27(s, \mathrm{MeN}) ; 6.36$ (br. s, arom. H); $6.80(d, J=7.6$, arom. H); $7.01(d, J=7.1,2$ arom. H); 7.06 $(d d, J=7.6,7.6$, arom. H); $7.13(d d, J=2.7,2.6$, arom. H); $7.23(d, J=7.6$, arom. H); 7.27-7.33 ($m, 3$ arom. H) ; 8.15 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): 29.6 ; 35.1 ; 37.4 ; 100.8 ; 109.1 ; 119.1 ; 122.1 ; 123.6 ; 127.1$; 127.3; 127.6; 129.6; 133.3; 135.7; 144.1; 172.8. HR-FAB-MS: $279.1498\left([M+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}\right.$; calc. 279.1497).

1-[(tert-Butoxy)carbonyl]-N-methoxy-N-methyl-1H-indole-4-propanamide (14). To a soln. of 11 ($399 \mathrm{mg}, 1.38 \mathrm{mmol}$), N, O-dimethylhydroxylamine hydrochloride ($385 \mathrm{mg}, 3.95 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}$ $(1.6 \mathrm{ml}, 11.5 \mathrm{mmol})$ in dry $\mathrm{MeCN}(10.3 \mathrm{ml})$ was added a soln. of 1 m 2 -chloro-1,3-dimethyl- 1 H imidazolium chloride (DMC) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.20 \mathrm{ml}, 3.20 \mathrm{mmol})$ over 20 min at -15°. The mixture was stirred at -10° for 4 h and then at 0° for 1 h . The reaction was quenched with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ soln. $(10 \mathrm{ml})$. Then the precipitate was dissolved with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, the mixture extracted with $\operatorname{AcOEt}(2 \times$ 30 ml), the combined extract washed with brine (15 ml), dried, and concentrated, and the residue purified by CC (benzene/AcOEt $10: 1$): $\mathbf{1 4}(417 \mathrm{mg}, 91 \%)$. Colorless oil. IR (ATR): 1732, 1662 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.81\left(t, J=8.0, \mathrm{CH}_{2}(\alpha)\right) ; 3.18(s, \mathrm{MeN}) ; 3.20\left(t, J=8.0, \mathrm{CH}_{2}(\beta)\right)$; $3.57(s, \mathrm{MeO}) ; 6.67(d, J=3.8$, arom. H); $7.09(d, J=7.8$, arom. H); $7.24(d d, J=7.8,7.8$, arom. H); 7.60 $\left(d, J=3.8\right.$, arom. H) ; $8.01\left(d, J=7.8\right.$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): 27.9 ; 28.2 ; 32.2 ; 33.2 ; 61.2 ; 83.7$; 105.4; 113.3; 122.2; $124.4 ; 125.6 ; 129.6 ; 133.6 ; 135.2 ; 149.8 ; 173.8$. HR-FAB-MS: $333.1798\left([M+\mathrm{H}]^{+}\right.$, $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}^{+}$; calc. 333.1814).

N -Methoxy-N-methyl-1 H -indole-4-propanamide (15). A soln. of $\mathbf{1 4}$ ($84 \mathrm{mg}, 0.254 \mathrm{mmol}$) in AcOH $(3.2 \mathrm{ml}, 56.0 \mathrm{mmol})$ was stirred at 100° for 21 h , and the solvent was evaporated. The residue was purified by CC (benzene/AcOEt $8: 1$ to $4: 1$): $\mathbf{1 5}$ ($53 \mathrm{mg}, 89 \%$). Yellow oil. IR (ATR): 3400-3286(NH), 1637 $(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 2.87\left(t, J=8.1, \mathrm{CH}_{2}(\alpha)\right) ; 3.20(s, \mathrm{MeN}) ; 3.26\left(t, J=8.1, \mathrm{CH}_{2}(\beta)\right) ; 3.58(s$, $\mathrm{MeO}) ; 6.63(d d d, J=3.0,2.2,1.1$, arom. H); $6.98(d d, J=7.6,1.1$, arom. H); $7.14(d d, J=7.6,7.6$, arom. H); $7.22\left(d d, J=3.0,2.8\right.$, arom. H); $7.28(d d, J=7.6,1.1$, arom. H); 8.20 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz): $28.4 ; 32.2 ; 33.0 ; 61.2 ; 100.9 ; 109.2 ; 119.1 ; 122.2 ; 123.8 ; 127.1 ; 133.4 ; 135.8 ; 174.2$. HR-FABMS: $233.1283\left([M+\mathrm{H}]^{+}, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}\right.$; calc. 233.1290).
N, N-Dimethyl-1H-indole-4-propanethioamide (16). A mixture of $9(128 \mathrm{mg}, 0.592 \mathrm{mmol})$ and Lawesson's reagent $(167 \mathrm{mg}, 0.413 \mathrm{mmol})$ in THF $(1.8 \mathrm{ml})$ was stirred at r.t. for 24 h . After addition of $\mathrm{MeOH}(2.5 \mathrm{ml})$, the mixture was stirred at r.t. for 5 min , and the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(2 \mathrm{ml})$ followed by $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The mixture was extracted with $\mathrm{AcOEt}(2 \times 13 \mathrm{ml})$, the combined extract washed with brine $(6 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (benzene/AcOEt $1: 0$ to $20: 1$): $\mathbf{1 6}(127 \mathrm{mg}, 93 \%)$. Colorless plates. M.p. $89.5-90.5^{\circ}$. IR (ATR): 3400$3200(\mathrm{NH}), 1522(\mathrm{CS}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 3.05,3.46($ each $s, \mathrm{MeN}) ; 3.21\left(d d, J=10.3,8.4, \mathrm{CH}_{2}(\alpha)\right)$; $3.41\left(d d, J=10.3,8.4, \mathrm{CH}_{2}(\beta)\right) ; 6.67(d d d, J=3.1,2.2,0.9$, arom. H); $6.97(d, J=7.6$, arom. H); $7.13(d d$, $J=7.6,7.6$, arom. H); $7.23(d d, J=3.1,2.6$, arom. H); $7.29(d d, J=7.6,0.9$, arom. H); 8.20 (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}$-NMR (100 MHz): 33.5; 41.6; 44.2; 44.6; 100.9; 109.5; 119.3; 122.2; 124.0; 127.2; 132.8; 135.7; 203.7. HR-FAB-MS: $232.1047\left(M^{+}, \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}\right.$; calc. 232.1034) .

Intramolecular Vilsmeier-Haack Reaction of Amide 9 (Entry 1, Table 1): 4,5-Dihydrobenz[cd]in-dol-3(1H)-one (10). A soln. of $9(45 \mathrm{mg}, 0.209 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(75 \mathrm{mg}, 0.546 \mathrm{mmol})$, and $\mathrm{POCl}_{3}(70 \mu \mathrm{l}$, $0.751 \mathrm{mmol})$ in dry $\mathrm{MeCN}(0.6 \mathrm{ml})$ was stirred at 65° for 3 h . Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(3 \mathrm{ml})$ and the mixture washed with $\mathrm{AcOEt}(2 \times 4 \mathrm{ml})$. After the aq. soln. was basified with 5 N NaOH to pH 12 , the mixture was extracted with $\operatorname{AcOEt}(3 \times 11 \mathrm{ml})$, the combined extract washed with brine $(10 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (benzene/AcOEt $7: 1$ to $9: 2$): $\mathbf{1 0}$ $(27 \mathrm{mg}, 74 \%)$. Yellow prisms. M.p. $183.5-184^{\circ}$ ([5a]: 184°). IR (ATR): 3500-3250(NH), 1650 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}): 2.90\left(t, J=7.0, \mathrm{CH}_{2}(5)\right) ; 3.37\left(t, J=7.0, \mathrm{CH}_{2}(4)\right) ; 7.11(d d, J=7.5,0.9$, arom. H); $7.25(d d, J=7.5,7.5$, arom. H); $7.31(d d, J=7.5,0.9$, arom. H); $7.75(d, J=2.7$, arom. H); 9.09 (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}$-NMR (125 MHz): 27.7; 39.9; 109.2; 114.3; 118.5; 123.8; 124.3; 129.1; 129.3; 133.6; 194.5. HR-FABMS: $172.0770\left([M+\mathrm{H}]^{+}, \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}^{+}\right.$; calc. 172.0762).

1-[(tert-Butoxy)carbonyl]-1H-indole-4-propanol (17). A mixture of $\mathbf{7 b}(209 \mathrm{mg}, 0.66 \mathrm{mmol})$ and $\mathrm{LiBH}_{4}(95 \%, 34.3 \mathrm{mg}, 1.50 \mathrm{mmol})$ in dry THF (3.2 ml) and EtOH (0.8 ml) under Ar was stirred at r.t. for 1.5 h . Then the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ at 0°, the mixture extracted with $\mathrm{AcOEt}(3 \times 10 \mathrm{ml})$, the combined extract washed with brine $(5 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (hexane/AcOEt $9: 2): \mathbf{1 7}(167 \mathrm{mg}, 92 \%)$. Colorless oil. IR
(neat): $3368(\mathrm{OH}), 1735(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 1.72$ (br. $\left.s, \mathrm{OH}\right) ; 2.00(t t, J=7.6$, 6.4, $\left.\mathrm{CH}_{2}(\beta)\right) ; 2.96\left(t, J=7.6, \mathrm{CH}_{2}(\gamma)\right) ; 3.68\left(t, J=6.4, \mathrm{CH}_{2}(\alpha)\right) ; 6.64(d d, J=3.7,0.7$, arom. H); $7.06(d d$, $J=7.7,0.7$, arom. H); $7.23(d d, J=7.7,7.7$, arom. H); $7.59(d, J=3.7$, arom. H); $8.00(d, J=7.7$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): 28.2 ; 29.1 ; 33.5 ; 62.3 ; 83.6 ; 105.4 ; 113.0 ; 122.2 ; 124.3 ; 125.5 ; 129.7 ; 134.2 ; 135.1$; 149.8. HR-FAB-MS: $275.1540\left(M^{+}, \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}^{+}\right.$; calc. 275.1522).

3-\{1-[(tert-Butoxy)carbonyl]-1H-indol-4-yllpropyl Phenyl Sulfide (=1-[(tert-Butoxy)carbonyl]-4-[3-(phenylthio)propyl]-1H-indole; 18). To an ice-cooled mixture of $\mathbf{1 7}(116 \mathrm{mg}, 0.423 \mathrm{mmol})$ and $\operatorname{PhSSPh}(185 \mathrm{mg}, 0.848 \mathrm{mmol})$ in dry $\mathrm{MeCN}(3.5 \mathrm{ml})$ under Ar was added $\mathrm{Bu}_{3} \mathrm{P}(0.21 \mathrm{ml}, 0.843 \mathrm{mmol})$, and the mixture was stirred at r.t. for 1 h . Then the reaction was quenched with 5% aq. NaOH soln. $(3.5 \mathrm{ml})$ at 0°, the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 8 \mathrm{ml})$, the combined extract washed with 10% aq. HCl soln. $(2.7 \mathrm{ml})$, sat. aq. NaHCO_{3} soln. $(2 \times 6 \mathrm{ml})$, and brine $(2 \times 5 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (hexane/AcOEt $120: 1$ to $110: 1$): $\mathbf{1 8}(147 \mathrm{mg}, 95 \%)$. Colorless oil. IR (neat): $1735(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.04\left(t t, J=7.3,7.3, \mathrm{CH}_{2}(\beta)\right) ; 2.94\left(t, J=7.3, \mathrm{CH}_{2}(\gamma)\right)$; $3.00\left(t, J=7.3, \mathrm{CH}_{2}(\alpha)\right) ; 6.59(d d, J=3.7,0.9$, arom. H); $7.03(d i f . d, J=7.8$, arom. H); $7.16(m$, arom. H); $7.23-7.31\left(m, 5\right.$ arom. H); $7.57\left(d, J=3.7\right.$, arom. H) ; $8.00\left(d, J=7.8\right.$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$: $28.2 ; 29.9 ; 31.7 ; 33.0 ; 83.6 ; 105.3 ; 113.1 ; 122.4 ; 124.3 ; 125.5 ; 125.8 ; 128.8 ; 129.0 ; 129.7 ; 133.6 ; 135.1 ; 136.5$; 149.7. HR-FAB-MS: 367.1596 ($M^{+}, \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}^{+}$; calc. 367.1606).
$3-\{1-[($ tert-Butoxy)carbonyl $]-1 \mathrm{H}-$ indol-4-yllppropyl Phenyl Sulfoxide $(=1-[($ tert-Butoxy)carbonyl $]$ -4-[3-(phenylsulfinyl)propyl]-1 H-indole; 19). A mixture of $\mathbf{1 8}(265 \mathrm{mg}, 0.721 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(237 \mathrm{mg}$, $1.11 \mathrm{mmol})$ in $\mathrm{MeOH}(5.5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{ml})$ was stirred at r.t. for 7 h . Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, the mixture extracted with $\mathrm{AcOEt}(3 \times 13 \mathrm{ml})$, the combined extract washed with sat. aq. NaHCO_{3} soln. $(5 \mathrm{ml})$ and brine $(2 \times 5 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (hexane/AcOEt 7:2): 19 ($266 \mathrm{mg}, 96 \%$). Colorless oil. IR (neat): 1735 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.04,2.20$ (each $\left.d t t, J=15.2,7.6,7.6, \mathrm{CH}_{2}(\beta)\right) ; 2.79\left(t, J=7.6, \mathrm{CH}_{2}(\gamma)\right) ; 2.99$ $\left(t, J=7.6, \mathrm{CH}_{2}(\alpha)\right) ; 6.56(d, J=3.9$, arom. H); $6.99(d, J=7.9$, arom. H); $7.22(d d, J=7.9,7.9$, arom. H); $7.46-7.51\left(\mathrm{~m}, 3\right.$ arom. H) ; 7.55-7.59 ($\mathrm{m}, 2$ arom. H) ; $8.01\left(d, J=7.9\right.$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$: $22.9 ; 28.1 ; 31.5 ; 56.2 ; 83.7 ; 105.1 ; 113.4 ; 122.3 ; 123.9 ; 124.2 ; 125.6 ; 129.1 ; 129.6 ; 130.8 ; 132.6 ; 135.1 ; 143.7$; 149.6. HR-FAB-MS: $384.1632\left([M+\mathrm{H}]^{+}, \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}\right.$; calc. 384.1633).

3-(1H-Indol-4-yl)propyl Phenyl Sulfoxide (=4-[3-(Phenylsulfinyl)propyl]-1H-indole; 20). A soln. of $19(138 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{AcOH}(4.5 \mathrm{ml}, 78.7 \mathrm{mmol})$ was stirred at 100° for 19 h , and the solvent was evaporated. Then, the residue was dissolved with AcOEt $(20 \mathrm{ml})$, the org. soln. washed with sat. aq. NaHCO_{3} soln. $(8 \mathrm{ml})$ and brine $(9 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (hexane/ AcOEt $3: 1$ to $2: 1): \mathbf{2 0}(88 \mathrm{mg}, 87 \%)$. Yellow oil. IR (neat): $3400-3160(\mathrm{NH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 2.10$ $\left(d t t, J=13.9,7.5,7.5, \mathrm{CH}_{2}(\beta)\right) ; 2.83\left(t, J=7.5, \mathrm{CH}_{2}(\gamma)\right) ; 3.05\left(t, J=7.5, \mathrm{CH}_{2}(\alpha)\right) ; 6.53(d d d, J=2.9,2.0$, 0.9 , arom. H); $6.88(d d, J=7.4,0.9$, arom. H) $7.11(d d, J=7.4,7.4$, arom. H $) ; 7.20(d d, J=2.9,2.7$, arom. $\mathrm{H}) ; 7.27(d, J=7.4$, arom. H); 7.46-7.52 ($m, 3$ arom. H); 7.55-7.59 ($m, 3$ arom. H); 8.23 (br. s, NH). ${ }^{13}$ C-NMR (100 MHz): 22.7; 31.9; 56.5; 100.3; 109.5; 119.0; 121.7; 123.9; 124.0; 127.0; 129.1; 130.8; 132.2; 135.8; 143.5. HR-FAB-MS: $284.1117\left([M+\mathrm{H}]^{+}, \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NOS}^{+}\right.$; calc. 284.1109).

Pummerer-Type Cyclization of Sulfoxide 20: 3,7,8,9-Tetrahydro-6-phenylthiopyrano[3,2-e]indolium Trifluoroacetate (22). A soln. of $20(45 \mathrm{mg}, 0.159 \mathrm{mmol})$ and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(70 \mu \mathrm{l}, 0.496 \mathrm{mmol})$ in dry benzene $(3.0 \mathrm{ml})$ was stirred at r.t. for 1 h , and the solvent was evaporated. Purification of the residue by prep. TLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 3\right)$ gave $22(23 \mathrm{mg}, 38 \%)$. Light red prisms. M.p. $133.5-134.5^{\circ}$. IR (KBr): 1684 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 2.15,2.48(2 m, \mathrm{H}-\mathrm{C}(5)) ; 3.32,3.59\left(2 m, \mathrm{CH}_{2}(4)\right) ; 3.93,4.20$ $\left(2 m, \mathrm{CH}_{2}(6)\right) ; 6.84(d, J=3.2$, arom. H); $7.33(d, J=8.5$, arom. H); $7.54(m, 2$ arom. H); $7.59(d, J=3.2$, arom. H) ; 7.64 ($m, 2$ arom. H); 7.69 ($m, 2$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$): 15.9; 24.9; 42.0; $101.9 ; 112.7 ; 124.4 ; 125.2 ; 128.8 ; 128.9 ; 130.1 ; 130.8 ; 131.3 ; 131.9 ; 133.7 ; 134.0 ; 139.4 ; 162.9$. HR-FAB-MS: $266.1022\left(M^{+}, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NS}^{+}\right.$; calc. 266.1003).

Methyl α-(Acetylamino)-1H-indole-4-propanoate [6] (24). A mixture of $\mathbf{2 3}$ ($483 \mathrm{mg}, 1.17 \mathrm{mmol}$) and Mg turnings $(249 \mathrm{mg}, 10.2 \mathrm{mmol})$ in dry $\mathrm{MeOH}(16.0 \mathrm{ml})$ under Ar was stirred at r.t. for 2 h with sonication. Then the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. (9.0 ml) followd by $\mathrm{H}_{2} \mathrm{O}(9.0 \mathrm{ml})$ and $\mathrm{AcOEt}(5.0 \mathrm{ml})$. The mixture was extracted with $\mathrm{AcOEt}(3 \times 40 \mathrm{ml})$, the combined extract washed with sat. aq. NaHCO_{3} soln. $(20 \mathrm{ml})$ and brine $(30 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (benzene/AcOEt $3: 1$ to $2: 1$): $\mathbf{2 4}$ ($274 \mathrm{mg}, 90 \%$). Yellow oil. IR (ATR): 3288 (NH); 1736, 1653
(CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.93(s, \mathrm{MeCO}) ; 3.38(d d, J=13.9,5.6,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.46(d d, J=13.9,5.9$, $1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.70(s, \mathrm{MeO}) ; 5.00(d d d, J=8.0,5.9,5.6, \mathrm{H}-\mathrm{C}(\alpha)) ; 5.92(d, J=8.0, \mathrm{NH}) ; 6.57(d d d, J=$ 3.2, 2.2, 1.1, arom. H); $6.83(d, J=7.2$, arom. H); 7.12 ($d d, J=7.2,7.2$, arom. H); 7.23 ($d d, J=3.2,2.5$, arom. H); $7.32\left(d, J=7.2\right.$, arom. H); 8.24 (br. s, NH). EI-MS: $261\left(20,[M+\mathrm{H}]^{+}\right), 260\left(100, M^{+}\right), 201$ (100), 170 (65), 159 (51), 131 (100), 130 (100).

Methyl α-(Acetylamino)-1-[(tert-butoxy)carbonyl]-1H-indole-4-propanoate [6] (25). A soln. of 24 $(266 \mathrm{mg}, 1.02 \mathrm{mmol})$, DMAP $(14 \mathrm{mg}, 0.112 \mathrm{mmol})$, and $(\mathrm{Boc})_{2} \mathrm{O}(281 \mathrm{mg}, 1.29 \mathrm{mmol})$ in dry THF $(7.5 \mathrm{ml})$ under Ar was stirred at r.t. for 1 h , and the solvent was evaporated. The residue was purified by CC (benzene/AcOEt $4: 1$ to $2: 1$): $\mathbf{2 5}(357 \mathrm{mg}, 97 \%)$. Colorless oil. IR (ATR): 3379 (NH); 1732, 1657 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 1.95(s, \mathrm{MeCO}) ; 3.35(d d, J=13.9,5.2,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.41(d d$, $J=13.9,6.0,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.69(s, \mathrm{MeO}) ; 4.97(d d d, J=6.8,6.0,5.2, \mathrm{H}-\mathrm{C}(\alpha)) ; 5.93(d, J=6.8, \mathrm{NH}) ; 6.61$ $(d d, J=3.8,0.5$, arom. H); $6.93(d d, J=7.8,7.8$, arom. H); $7.23(d, J=7.8$, arom. H); $7.60(d, J=3.8$, arom. H) ; $8.07\left(d d, J=7.8\right.$, arom. H). FAB-MS: $361\left([M+\mathrm{H}]^{+}\right), 360\left(M^{+}\right)$.
α-(Acetylamino)-1-[(tert-butoxy)carbonyl]-N,N-dimethyl-1H-indole-4-propanamide (26). Under $\mathrm{Ar}, 2 \mathrm{~m} \mathrm{Me}{ }_{3} \mathrm{Al}$ in heptane $(2.2 \mathrm{ml}, 4.40 \mathrm{mmol})$ was added dropwise to a soln. of $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}(136 \mathrm{mg}$, $1.67 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{ml})$ at 0°, and the mixture was stirred at r.t. for 1 h . After addition of a soln. of $25(305 \mathrm{mg}, 0.85 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{ml})$ at 0°, the mixture was stirred at 30° for 26 h , and the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(8.0 \mathrm{ml})$ at 0°, followed by $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{ml})$ and 10% aq. HCl soln. $(2.4 \mathrm{ml})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$, the combined extract washed with sat. aq. NaHCO_{3} soln. $(15 \mathrm{ml})$ and brine $(25 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (AcOEt/EtOH 1:0 to $12: 1): \mathbf{2 6}(207 \mathrm{mg}, 66 \%)$. Colorless oil. IR (ATR): 3294 (NH); 1732, 1630 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}): 1.68\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.01(s, \mathrm{MeCO}) ; 2.27,2.76(2 s, \mathrm{MeN}) ; 3.13(d d, J=13.0,9.8$, $1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.37(d d, J=13.0,4.4,1 \mathrm{H}-\mathrm{C}(\beta)) ; 5.23(d d d, J=9.8,7.9,4.4, \mathrm{H}-\mathrm{C}(\alpha)) ; 6.57(d, J=7.9$, $\mathrm{NH}) ; 6.83(d, J=3.7$, arom. H); $7.01(d, J=7.6$, arom. H $) ; 7.22(d d, J=7.6,7.6$, arom. H); 7.60 $(d, J=3.7$, arom. H) ; $8.05\left(d, J=7.6\right.$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 23.3 ; 28.2 ; 35.5 ; 36.7 ; 37.7 ; 49.8 ; 83.8 ; 105.5$; 114.1; 123.6; 124.3; 126.0; 128.6; 130.6; 135.1; 149.7; 169.4; 171.3. HR-FAB-MS: 374.2082 ([$M+\mathrm{H}]^{+}$, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}^{+}$; calc. 374.2080).
α-(Acetylamino)- N, N-dimethyl-1 H -indole-4-propanamide (27). A soln. of 26 ($217 \mathrm{mg}, 0.582 \mathrm{mmol}$) in $\mathrm{AcOH}(7 \mathrm{ml}, 122.4 \mathrm{mmol})$ was stirred at 100° for 22 h , and the solvent was evaporated. The residue was purified by CC ($\mathrm{AcOEt} / \mathrm{EtOH} 1: 0$ to $9: 1$, followed by $4: 1$): $\mathbf{2 7}(147 \mathrm{mg}, 92 \%)$. Yellow prisms. M.p. $176-177^{\circ}$. IR (ATR): 3300-3200 (NH), $1620(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.78(s, \mathrm{MeCO})$; 2.57, $2.67(2 s, \mathrm{MeN}) ; 3.00(d d, J=13.3,6.9,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.11(d d, J=13.3,7.8,1 \mathrm{H}-\mathrm{C}(\beta)) ; 5.05(d d d$, $J=8.4,7.8,6.9, \mathrm{H}-\mathrm{C}(\alpha)) ; 6.53$ (br. s, arom. H); $6.77(d, J=7.6$, arom. H); $6.96(d d, J=7.6,7.6$, arom. H); $7.23(d, J=7.6$, arom. H); $7.31(d d, J=2.9,2.6$, arom. H); $8.30(d, J=8.4, \mathrm{NH}) ; 11.1$ (br. $s, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, (D_{6})DMSO): 22.3; 35.0; 36.2; 36.3; 48.8; 99.3; 109.9; 119.2; 120.7; 124.9; 127.4; 128.6; 135.6; 168.7; 171.2. HR-FAB-MS: 274.1547 ($[M+\mathrm{H}]^{+}, \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}^{+}$; calc. 274.1556).

Methyl $\alpha-\{[($ Benzyloxy $)$ carbonyl]amino $\}-1-[($ tert-butoxy)carbonyl]-1H-indole-4-propanoate [6] (29). Under Ar, a mixture of $28(180 \mathrm{mg}, 0.400 \mathrm{mmol})$ and Mg turnings ($62 \mathrm{mg}, 2.55 \mathrm{mmol}$) in dry $\mathrm{MeOH}(5.1 \mathrm{ml})$ was stirred for 2 h at r.t. with sonication. After further addition of Mg turnings $(21 \mathrm{mg}$, $0.864 \mathrm{mmol})$, the mixture was stirred at r.t. for 1 h under the same conditions. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(4.0 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(4.0 \mathrm{ml})$, and 4% aq. HCl soln. $(1.5 \mathrm{ml})$, the mixture extracted with $\operatorname{AcOEt}(20 \mathrm{ml}, 2 \times 14 \mathrm{ml})$, the combined extract washed with sat. aq. NaHCO_{3} soln. $(7 \mathrm{ml})$ and brine $(7 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (hexane/AcOEt 7:1): $\mathbf{2 9}(161 \mathrm{mg}, 89 \%)$. Colorless oil. IR (ATR): $3348(\mathrm{NH}), 1728(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 3.18(d d$, $J=13.9,8.8,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.39(d d, J=13.9,5.7,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.66(s, \mathrm{MeO}) ; 4.53(d d, J=8.8,5.7$, $\mathrm{H}-\mathrm{C}(\alpha)) ; 4.97,5.02\left(2 d, J=12.2, \mathrm{PhCH}_{2}\right) ; 6.69(d d, J=3.8$, arom. H); $7.03(d, J=7.8$, arom. H); 7.19 $(d d, J=7.8,7.8$, arom. H); 7.22-7.33 ($m, 5$ arom. H); 7.58 ($d, J=3.8$, arom. H); $8.01(d, J=7.8$, arom. H). EI-MS: $453\left(16,[M+\mathrm{H}]^{+}\right), 452\left(55, M^{+}\right), 396(25), 245(100), 220(28), 201(91), 174(94), 130$ (100), 91 (100), 57 (92).
$\alpha-\{[($ Benzyloxy carbonyl]amino\}-1-[(tert-butoxy)carbonyl]-1H-indole-4-propanoic Acid (30). A mixture of $29(369 \mathrm{mg}, 0.816 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(481 \mathrm{mg}, 11.5 \mathrm{mmol})$ in THF $(4.1 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ $(4.1 \mathrm{ml})$ was stirred at r.t. for 1 h , and the reaction was quenched with 6 N aq. $\mathrm{HCl}(\rightarrow \mathrm{pH} 2)$. The mixture was extracted with $\operatorname{AcOEt}(20 \mathrm{ml}, 2 \times 15 \mathrm{ml})$, the combined extract washed with brine $(10 \mathrm{ml})$, dried, and
concentrated, and the residue purified by CC (hexane/AcOEt $4: 1$ to $3: 1$): $\mathbf{3 0}$ (360 mg , quant.). Colorless oil. IR (ATR): $3400-2800(\mathrm{OH}), 1726(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.67\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 3.35(d d, J=13.9$, $6.3,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.48(d d, J=13.9,5.9,1 \mathrm{H}-\mathrm{C}(\beta)) ; 4.77(d d d, J=8.2,6.3,5.9, \mathrm{H}-\mathrm{C}(\alpha)) ; 5.08,5.11(2 d$, $\left.J=12.2, \mathrm{PhCH}_{2}\right) ; 5.19(d, J=8.2, \mathrm{NH}) ; 6.61(d, J=3.7$, arom. H); $7.00(d, J=7.8$, arom. H); $7.22(d d$, $J=7.8,7.8$, arom. H); 7.29-7.38 ($m, 5$ arom. H); $7.55(d, J=3.7$, arom. H); $8.07(d, J=7.8$, arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 28.2 ; 35.1 ; 54.5 ; 67.1 ; 83.8 ; 105.1 ; 114.4 ; 123.5 ; 124.4 ; 126.1 ; 127.8 ; 128.1 ; 128.2$; $128.5 ; 130.5 ; 135.3 ; 136.1 ; 149.7 ; 155.8 ; 175.7$. HR-FAB-MS: 438.1758 ($M^{+}, \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$; calc. 438.1791). $\alpha-\{[($ Benzyloxy)carbonyl]amino\}-1-[(tert-butoxy)carbonyl]-N, N -dimethyl-1 H -indole-4-propanamide (31). To an ice-cooled soln. of $\mathbf{3 0}(171 \mathrm{mg}, 0.391 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}(88 \mathrm{mg}, 1.08 \mathrm{mmol})$ in dry $\mathrm{MeCN}(3.4 \mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.55 \mathrm{ml}, 3.95 \mathrm{mmol})$ over 5 min , and the mixture was cooled to 15°. To the soln. was added 1 m DMC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.10 \mathrm{ml}, 1.10 \mathrm{mmol})$ over 10 min . The mixture was stirred at -10° for 1.5 h and then at 0° for 1.5 h , and the reaction was quenched with sat. aq. NaHCO_{3} soln. $(4 \mathrm{ml})$. Then the prepicitate was dissolved with $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{ml})$, the mixture extracted with $\mathrm{AcOEt}(3 \times$ 13 ml), the combined extract washed with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ soln. (4 ml) and brine (7 ml), dried, and concentrated, and the residue purified by CC (hexane/AcOEt $4: 1$ to $3: 1): \mathbf{3 1}(170 \mathrm{mg}, 93 \%)$. Colorless oil. IR (ATR): 3273 (NH); 1726, 1637 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.68\left(s, \mathrm{Me}_{3} \mathrm{C}\right) ; 2.26,2.75$ (each s, $\mathrm{MeN}) ; 3.16(d d, J=13.0,9.8,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.37(d d, J=13.0,4.8,1 \mathrm{H}-\mathrm{C}(\beta)) ; 4.97(d d d, J=9.8,8.2,4.8$, $\mathrm{H}-\mathrm{C}(\alpha)) ; 5.12\left(s, \mathrm{PhCH}_{2}\right) ; 5.84(d, J=8.2, \mathrm{NH}) ; 6.79(d, J=3.5$, arom. H); $7.02(d, J=7.7$, arom. H$)$; $7.22(d d, J=7.7,7.7$, arom. H$) ; 7.29-7.36(m, 5$ arom. H$) ; 7.59(d, J=3.5$, arom. H$) ; 8.05(d, J=7.7$, arom. H). ${ }^{13} \mathrm{C}-$ NMR (125 MHz): 28.2; 35.1; 36.7; 38.0; $51.3 ; 66.8 ; 83.8 ; 105.4 ; 114.1 ; 123.6 ; 124.3 ; 126.0 ; 127.0$; 128.0; 128.1; 128.5; 130.5; 135.1; 136.4; 149.7; 155.7; 171.2. HR-FAB-MS: $466.2338\left(M^{+}, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}^{+}\right.$; calc. 466.2342).
$\alpha-\{[($ Benzyloxy)carbonyl]amino $\}-\mathrm{N}, \mathrm{N}-$ dimethyl-1H-indole-4-propanamide (32). A soln. of 31 $(268 \mathrm{mg}, 0.576 \mathrm{mmol})$ in $\mathrm{AcOH}(6.6 \mathrm{ml}, 115 \mathrm{mmol})$ was stirred at 100° for 16 h , and the solvent was evaporated. The residue was purified by CC (hexane/AcOEt $2: 1$ to $3: 2$): $\mathbf{3 2}(196 \mathrm{mg}, 93 \%)$. Yellow oil. IR (ATR): $3292(\mathrm{NH}) ; 1703,1630(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 2.21,2.73(2 s, \mathrm{MeN}) ; 3.19(d d, J=12.8$, $9.9,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.42(d d, J=12.8,4.9,1 \mathrm{H}-\mathrm{C}(\beta)) ; 5.06(d d d, J=9.9,8.2,4.9, \mathrm{H}-\mathrm{C}(\alpha)) ; 5.12(s$, $\left.\mathrm{PhCH}_{2}\right) ; 5.85(d, J=8.2, \mathrm{NH}) ; 6.75$ (br. s, arom. H$) ; 6.90(d, J=7.5$, arom. H); $7.09(d d, J=7.5,7.5$, arom. H); $7.22(d d, J=2.7,2.7$, arom. H); $7.29(d, J=7.5$, arom. H); $7.31-7.37$ ($\mathrm{m}, 3$ arom. H); 8.22 (br. s, $\mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 35.5 ; 36.6 ; 38.5 ; 51.2 ; 66.7 ; 100.8 ; 110.1 ; 120.5 ; 121.8 ; 124.3 ; 127.9 ; 128.0$; 128.1; 128.5; 128.6; 135.7; 136.5; 155.7; 171.7. HR-FAB-MS: $366.1812\left([M+\mathrm{H}]^{+}, \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}^{+}\right.$; calc. 366.1818).
α-Amino-N,N-dimethyl-1H-indole-4-propanamide (33). A mixture of $\mathbf{3 2}(132 \mathrm{mg}, 0.361 \mathrm{mmol})$ and $5 \% \mathrm{Pd} / \mathrm{C}(27.4 \mathrm{mg})$ in $\mathrm{MeOH}(3.0 \mathrm{ml})$ was stirred at r.t. for 2 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After filtration, the filtrate was evaporated. The residue was purified by $\mathrm{CC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 30: 1\right.$ to $\left.8: 1\right)$: $\mathbf{3 3}(80 \mathrm{mg}, 96 \%)$. Yellow oil. IR (ATR): 3600-3100 (NH), $1620(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 2.60,2.86$ (each s, MeN); 3.09 $(d d, J=13.2,7.5,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.22(d d, J=13.2,7.0,1 \mathrm{H}-\mathrm{C}(\beta)) ; 4.12(d d, J=7.5,7.0, \mathrm{H}-\mathrm{C}(\alpha)) ; 6.60$ $(d d d, J=3.1,2.2,0.9$, arom. H); $6.94(d d, J=7.6,0.9$, arom. H); $7.13(d d, J=7.6,7.6$, arom. H); 7.23 ($d d$, $J=3.1,2.7$, arom. H); $7.30(d, J=7.6$, arom. H); 8.29 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 35.7 ; 36.6 ; 40.8$; $52.0 ; 100.8 ; 109.7 ; 120.5 ; 122.1 ; 124.1 ; 127.8 ; 129.8 ; 135.8 ; 175.0$. HR-FAB-MS: $232.1460\left([M+\mathrm{H}]^{+}\right.$, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}$; calc. 232.1450).
$\alpha-($ Benzoylamino)-N,N-dimethyl-1H-indole-4-propanamide (34). A soln. of $\mathbf{3 2}$ (110 mg , $0.301 \mathrm{mmol})$ and $5 \% \mathrm{Pd} / \mathrm{C}(23.5 \mathrm{mg})$ in $\mathrm{MeOH}(2.4 \mathrm{ml})$ was stirred at r.t. for 2.5 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After filtration, the filtrate was evaporated. The residue was dissolved in dry THF (2.5 ml), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(252 \mathrm{mg}, 1.82 \mathrm{mmol})$ and benzoyl chloride ($60 \mu \mathrm{l}, 0.517 \mathrm{mmol}$) were added at 0°. After being stirred at r.t. for 1 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The mixture was extracted with $\operatorname{AcOEt}(3 \times 6 \mathrm{ml})$, the combined extract washed with sat. aq. NaHCO_{3} soln. (5 ml) and brine (7 ml), dried, and concentrated, and the residue was purified by CC (hexane/AcOEt 1:1): $\mathbf{3 4}$ ($95 \mathrm{mg}, 94 \%$ over 2 steps). Colorless prisms. M.p. $197-198^{\circ}$. IR (ATR): $3350-3250$ (NH), 1620 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\left.\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 2.74,2.77$ (each $\left.s, \mathrm{MeN}\right) ; 3.20(d d, J=13.4,7.7,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.26(d d, J=13.4,7.0$, $1 \mathrm{H}-\mathrm{C}(\beta)) ; 5.21(d d, J=7.7,7.0, \mathrm{H}-\mathrm{C}(\alpha)) ; 6.60(\mathrm{~m}$, arom. H$) ; 6.91(d, J=7.6$, arom. H); $6.97(d d, J=$ 7.6, 7.6, arom. H); $7.23(d, J=7.6$, arom. H); $7.32(d d, J=2.7,2.7$, arom. H); $7.43(d d, J=7.4,7.4,2$ arom. H); $7.51(d d, J=7.4,1.5$, arom. H); $7.84(d d, J=7.4,1.5,2$ arom. H); $8.74(d, J=7.9, \mathrm{NH}) ; 11.07$ (br. s,
$\mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 35.2 ; 35.3 ; 36.4 ; 49.9 ; 99.3 ; 109.9 ; 119.5 ; 120.7 ; 124.9 ; 127.5$ $(\mathrm{C} \times 3) ; 128.1 ; 128.9 ; 131.3 ; 133.8 ; 135.7 ; 165.8 ; 171.3$. HR-FAB-MS: $336.1685\left([M+\mathrm{H}]^{+}, \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}^{+}\right.$; calc. 336.1712).
$\alpha-[($ Ethoxycarbonyl)amino $]-\mathrm{N}, \mathrm{N}-$ dimethyl-1H-indole-4-propanamide (35). A soln. of $32(60 \mathrm{mg}$, $0.164 \mathrm{mmol})$ and $5 \% \mathrm{Pd} / \mathrm{C}(12 \mathrm{mg})$ in $\mathrm{MeOH}(1.5 \mathrm{ml})$ was stirred at r.t. for 2.5 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After filtration, the filtrate was evaporated. The residue was dissolved in dry THF (1.4 ml), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(74.5 \mathrm{mg}, 0.539 \mathrm{mmol})$ and ethyl carbonochloridate ($35 \mu \mathrm{l}, 0.366 \mathrm{mmol}$) were added at 0°. After being stirred at r.t. for 0.5 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The mixture was extracted with AcOEt $(3 \times 7 \mathrm{ml})$, the combined extract washed with brine $(4 \mathrm{ml})$, dried, and evaporated, and the residue purified by CC (hexane/AcOEt $3: 1$ to $1: 1$): $\mathbf{3 5}$ ($48 \mathrm{mg}, 96 \%$ over 2 steps). Colorless oil. IR (ATR): 3294 (NH); 1697, 1632 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 1.25\left(t, J=7.1, \mathrm{MeCH}_{2}\right.$); 2.21, 2.73 (each s, $\mathrm{MeN}) ; 3.18(d d, J=13.0,9.7,1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.41(d d, J=13.0,4.9,1 \mathrm{H}-\mathrm{C}(\beta)) ; 4.13\left(q, J=7.1, \mathrm{MeCH}_{2}\right)$; $5.04(d d d, J=9.7,8.4,4.9, \mathrm{H}-\mathrm{C}(\alpha)) ; 5.72(d, J=8.4, \mathrm{NH}) ; 6.75($ br. s, arom. H); $6.90(d, J=7.6$, arom. H); 7.09 ($d d, J=7.6,7.6$, arom. H); $7.22(d d, J=2.7,2.7$, arom. H); $7.29(d, J=7.6$, arom. H); 8.31 (br. s, NH). ${ }^{13}$ C-NMR (125 MHz): 14.6; 35.5; 36.6; 38.5; 51.0; 60.9; 101.0; 110.0; 120.5; 122.0; 124.2; 128.0; 128.4; 135.6; 156.0; 171.8. HR-FAB-MS: $304.1672\left([M+\mathrm{H}]^{+}, \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}^{+}\right.$; calc. 304.1661).
$\mathrm{N}, \mathrm{N}-$ Dimethyl- $\alpha-\{[(4-m e t h y l p h e n y l)$ sulfonyl]amino $\}-1 \mathrm{H}$-indole-4-propanamide (36). A mixture of $32(110 \mathrm{mg}, 0.301 \mathrm{mmol})$ and $5 \% \mathrm{Pd} / \mathrm{C}(24.7 \mathrm{mg})$ in $\mathrm{MeOH}(2.4 \mathrm{ml})$ was stirred at r.t. for 2 h under H_{2} (1 atm), and the catalyst was filtered off. After concentration of the filtrate, the residue was dissolved in dry THF $(2.7 \mathrm{ml})$ and, to the soln. at 0° was added $\mathrm{K}_{2} \mathrm{CO}_{3}(189.5 \mathrm{mg}, 1.37 \mathrm{mmol})$ and $\mathrm{TsCl}(90 \mathrm{mg}$, $0.472 \mathrm{mmol})$. The mixture was stirred at r.t. for 3 h , and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The mixture was extracted with $\mathrm{AcOEt}(3 \times 7 \mathrm{ml})$, the combined extract washed with sat. aq. NaHCO_{3} soln. $(5 \mathrm{ml})$ and brine $(7 \mathrm{ml})$, dried, and evaporated, and the residue purified by $\mathrm{CC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 35: 1\right): \mathbf{3 6}$ ($93 \mathrm{mg}, 81 \%$ over 2 steps). Light green prisms. M.p. $223-224^{\circ}$. IR (ATR): 3500-3200(NH), 1620 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 2.24,2.38(2 s, \mathrm{MeN}) ; 2.34(s, \mathrm{MeC}) ; 2.88$ ($d d, J=13.0,5.8$, $1 \mathrm{H}-\mathrm{C}(\beta)) ; 3.02(d d, J=13.0,8.9,1 \mathrm{H}-\mathrm{C}(\beta)) ; 4.44(d d, J=8.9,5.8, \mathrm{H}-\mathrm{C}(\alpha)) ; 6.20$ (br. s, arom. H); $6.64(d, J=7.6$, arom. H); $6.92(d d, J=7.6,7.6$, arom. H); $7.22(d, J=7.6$, arom. H); 7.27-7.29 ($m, 3$ arom. H) ; 7.57 ($d, J=8.2,2$ arom. H) ; 8.15 (br. s, NH); 11.05 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, (D_{6})DMSO): 20.9; 34.9; 36.0; 36.8; 51.9; 98.7; 110.1; 119.4; 120.7; 125.0; 126.4; 127.2; 127.4; 129.1; 135.6; 138.1; 142.4; 169.9. HR-FAB-MS: $386.1526\left([M+\mathrm{H}]^{+}, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}\right.$; calc. 386.1538).

Intramolecular Vilsmeier-Haack Reaction of Amide 27 (Entry 1, Table 2): N-(1,3,4,5-Tetrahydro-3-oxobenz[cd]indol-4-yl)acetamide (37). A suspension of $27(40 \mathrm{mg}, 0.146 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}$, $0.383 \mathrm{mmol})$, and $\mathrm{POCl}_{3}(53 \mu \mathrm{l}, 0.569 \mathrm{mmol})$ in dry $\mathrm{MeCN}(0.65 \mathrm{ml})$ was stirred at 65° for 1 h , and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The aq. soln. was washed with $\operatorname{AcOEt}(2 \times 6 \mathrm{ml})$, basified with 5 N NaOH to pH 12 , and extracted with $\operatorname{AcOEt}(3 \times 12 \mathrm{ml})$. The combined extract was washed with brine $(6 \mathrm{ml})$, dried, and concentrated, and the residue purified by CC (benzene/AcOEt $1: 1$ to $0: 1$): $\mathbf{3 7}$ ($11.5 \mathrm{mg}, 34 \%$). Yellow prisms. M.p. $231.5-232^{\circ}$. IR (ATR): 3294 (NH); 1650, 1620 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz},\left(\mathrm{D}_{6}\right)$ acetone $): 2.02(s, \mathrm{MeCO}) ; 3.20(d d, J=15.8,12.2,1 \mathrm{H}-\mathrm{C}(5)) ; 3.68(d d, J=15.8,6.6$, $1 \mathrm{H}-\mathrm{C}(5)) ; 4.90(d d d, J=12.2,6.6,5.2, \mathrm{H}-\mathrm{C}(4)) ; 7.06(d, J=7.6$, arom. H); $7.21(d d, J=7.6,7.6$, arom. $\mathrm{H}) ; 7.37(d, J=7.6$, arom. H); 7.44 (br. $s, \mathrm{NH}) ; 7.88$ ($d, J=2.4$, arom. H); 11.30 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, (D_{6})acetone): 22.9; 35.4; 57.3; 110.8; 113.6; 119.1; 124.7; 125.9; 128.6; 129.7; 134.8; 170.4; 190.2. HR-FAB-MS: 229.0989 ($[M+\mathrm{H}]^{+}, \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$; calc. 229.0977).

Methyl ($\alpha \mathrm{S}$)- $\alpha-\{[($ Benzyloxy)carbonyl]amino\}-1-[(tert-butoxy)carbonyl]-1H-indole-4-propanoate [6] ($(S)-\mathbf{2 9})$. (S)-29 was prepared by asymmetric hydrogenation of $\mathbf{2 8}$ according to [6]. $[\alpha]_{\mathrm{D}}^{24}=-15.5$ $(c=0.5, \mathrm{MeOH})\left([6]:[\alpha]_{\mathrm{D}}^{25}=-13.4(c=0.685, \mathrm{MeOH})\right)$. Chiral HPLC (Daicel Chiralcel OD-H, hexane/ $\left.{ }^{i} \operatorname{PrOH} 24: 1,1 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}\right): t_{\mathrm{R}} 25.5(S ; 99 \%$ ee $)$ and $27.9 \mathrm{~min}(R)$.
($\alpha \mathrm{S}$)- α-\{[(Benzyloxy)carbonyl]amino\}-1-[(tert-butoxy)carbonyl]-1H-indole-4-propanoic Acid $((S) \mathbf{- 3 0})$. As described for racemic 30, from (S)-29: $(S)-\mathbf{3 0} \cdot[\alpha]_{\mathrm{D}}^{25}=+32.5\left(c=0.67, \mathrm{CHCl}_{3}\right)$.
($\alpha \mathrm{S}$)- α - $\{[($ Benzyloxy) carbonyl]amino $\}-1-[($ tert-butoxy $)$ carbonyl]-N,N-dimethyl-1H-indole-4-propanamide $((S)-31)$. As described for racemic 31, from (S)-30: $(S)-\mathbf{3 1} .[\alpha]_{\mathrm{D}}^{24}=+24.9\left(c=0.56, \mathrm{CHCl}_{3}\right)$.
($\alpha \mathrm{S}$)- $\alpha-\{[($ Benzyloxy) carbonyl]amino $\}-\mathrm{N}, \mathrm{N}-$ dimethyl-1H-indole-4-propanamide ((S)-32). As described for racemic 32, from (S)-31: (S)-32. $[\alpha]_{\mathrm{D}}^{24}=+38.2\left(c=0.56, \mathrm{CHCl}_{3}\right)$. Chiral HPLC (Daicel Chiralcel $O J-H$, hexane $/ \mathrm{PrOH} 9: 1,0.7 \mathrm{ml} / \mathrm{min}, 230 \mathrm{~nm}): t_{\mathrm{R}} 57.5(S ; 99 \%$ ee $)$ and $64.4 \mathrm{~min}(R)$.
$(\alpha \mathrm{S})-\alpha$-(Acetylamino)-N,N-dimethyl-1H-indole-4-propanamide ((S)-27). A mixture of (S) - $\mathbf{3 2}$ $(164 \mathrm{mg}, 0.449 \mathrm{mmol}), 5 \% \mathrm{Pd} / \mathrm{C}(49.0 \mathrm{mg})$, and $\mathrm{Ac}_{2} \mathrm{O}(0.300 \mathrm{ml}, 3.17 \mathrm{mmol})$ in $\mathrm{MeOH}(3.7 \mathrm{ml})$ was stirred at r.t. for 5.5 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After removal of the catalyst by filtration, the filtrate was concentrated. The residue was purified by CC (AcOEt/EtOH 1:0 to 20:1): (S)-27 (105 mg, 85\%). Light orange prisms. M.p. $174-175^{\circ} .[\alpha]_{\mathrm{D}}^{24}=+84.0(c=0.43, \mathrm{MeOH})$.

Intramolecular Vilsmeier-Haack Reaction of (S)-27: N-[(4S)-1,3,4,5-Tetrahydro-3-oxobenz[cd]in-dol-4-yl]acetamide $((S)-37)$. As described for racemic 37, from (S)-27: (S)-37. M.p. 231.4-232.3 $\cdot[\alpha]_{\mathrm{D}}^{20}=$ $-3.1(c=0.22, \mathrm{MeOH})$. Chiral HPLC (Daicel Chiralpak $A D-H$, hexane $/ E t O H 4: 1,0.7 \mathrm{ml} / \mathrm{min}, 247 \mathrm{~nm}$): $t_{\mathrm{R}} 16.8(S: 4 \% \mathrm{ee})$ and $19.7 \mathrm{~min}(R)$.

REFERENCES

[1] A. Hofmann, 'Ergot Alkaloids, Pharmacology', Eds. P. F. Spano and M. Trabucchi, Karger, Basel, Switzerland, 1978, Vol. 16, Suppl. 1, p. 1; L. Lemberger, Fed. Proc. 1978, 37, 2176; D. Berde, O. Schild, 'Handbook of Experimental Pharmacology', Springer Verlag, Berlin, Germany, 1978; Vol. 49, p. 1.
[2] a) E. A Kornfeld, E. J. Fornefeld, G. B. Kline, M. J. Mann, D. E. Morrison, R. G. Jones, R. B. Woodward, J. Am. Chem. Soc. 1956, 78, 3087; b) M. Julia, F. LeGoffic, J. Igolen, M. Baillarge, Tetrahedron Lett. 1969, 1569; c) V. W. Armstrong, S. Coulton, R. Ramage, Tetrahedron Lett. 1976, 4311; R. Ramage, V. W. Armstrong, S. Coulton, Tetrahedron 1981, 9 (Suppl.), 157; d) W. Oppolzer, E. Francotte, K. Baettig, Helv. Chim. Acta 1981, 64, 478; e) J. Rebek Jr., D. F. Tai, Tetrahedron Lett. 1983, 24, 859; J. Rebek Jr., D. F. Tai, Y. K. Shue, J. Am. Chem. Soc. 1984, 106, 1813; f) T. Kurihara, T. Terada, R. Yoneda, Chem. Pharm. Bull. 1986, 34, 442; T. Kurihara, T. Terada, S. Harusawa, R. Yoneda, Chem. Pharm. Bull. 1987, 35, 4793; g) T. Kiguchi, C. Hashimoto, T. Naito, I. Ninomyia, Heterocycles 1982, 19, 2279 ; I. Ninomyia, C. Hashimoto, T. Kiguchi, T. Naito, J. Chem. Soc., Perkin Trans. 1 1985, 941; h) S. Cacchi, P. G. Ciattini, E. Morera, G. Ortar, Tetrahedron Lett. 1988, 29, 3117; i) J. B. Hendrickson, J. Wang, Org. Lett. 2004, 6, 3.
[3] I. Moldvai, E. Temesvari-Major, M. Incze, E. Szentirmay, E. Gacs-Baitz, C. Szantay, J. Org. Chem. 2004, 69, 5993; T. Kurokawa, M. Isomura, H. Tokuyama, T. Fukuyama, private communication.
[4] K. Hada, T. Watanabe, T. Isobe, T. Ishikawa, J. Am. Chem. Soc. 2001, 123, 7705; T. Haga, T. Ishikawa, Tetrahedron 2005, 61, 2857; W. Disadee, T. Ishikawa, J. Org. Chem. 2005, 70, 9399; W. Disadee, T. Ishikawa, M. Kawahata, K. Yamaguchi, J. Org. Chem. 2006, 71, 6600.
[5] a) D. Nedelec, L. Raincy, U.S. Patent No. 4774242, 1988; b) H. Muratake, M. Natsume, Tetrahedron Lett. 1989, 30, 1815; c) G. Spadoni, C. Balsamini, G. Diamantini, B. Di Giacomo, G. Tarzia, M. Mor, P. V. Plazzi, S. Rivara, V. Lucini, R. Nonno, M. Pannacci, F. Fraschimi, B. M. Stankov, J. Med. Chem. 1997, 40, 1990.
[6] P. R. Carlier, P. C.-H. Lam, D. M. Wong, J. Org. Chem. 2002, 67, 6256.
[7] H. Ishii, I. S. Chen, S. Ueki, T. Masuda, M. Morita, T. Ishikawa, J. Chem. Soc., Perkin Trans. 1 1987, 2415.
[8] T. Saitoh, T. Ichikawa, Y. Horiguchi, J. Toda, T. Sano, Chem. Pharm. Bull. 2001, 49, 979.
[9] Y. Yokoyama, M. Takahashi, M. Takashima, Y. Kohno, H. Kobayashi, K. Kataoka, K. Shidori, Y. Murakami, Chem. Pharm. Bull. 1994, 42, 832.
[10] T. Isobe, T. Ishikawa, J. Org. Chem. 1999, 64, 6984.

